Automated pollen identification using microscopic imaging and texture analysis.

نویسندگان

  • J Víctor Marcos
  • Rodrigo Nava
  • Gabriel Cristóbal
  • Rafael Redondo
  • Boris Escalante-Ramírez
  • Gloria Bueno
  • Óscar Déniz
  • Amelia González-Porto
  • Cristina Pardo
  • François Chung
  • Tomás Rodríguez
چکیده

Pollen identification is required in different scenarios such as prevention of allergic reactions, climate analysis or apiculture. However, it is a time-consuming task since experts are required to recognize each pollen grain through the microscope. In this study, we performed an exhaustive assessment on the utility of texture analysis for automated characterisation of pollen samples. A database composed of 1800 brightfield microscopy images of pollen grains from 15 different taxa was used for this purpose. A pattern recognition-based methodology was adopted to perform pollen classification. Four different methods were evaluated for texture feature extraction from the pollen image: Haralick's gray-level co-occurrence matrices (GLCM), log-Gabor filters (LGF), local binary patterns (LBP) and discrete Tchebichef moments (DTM). Fisher's discriminant analysis and k-nearest neighbour were subsequently applied to perform dimensionality reduction and multivariate classification, respectively. Our results reveal that LGF and DTM, which are based on the spectral properties of the image, outperformed GLCM and LBP in the proposed classification problem. Furthermore, we found that the combination of all the texture features resulted in the highest performance, yielding an accuracy of 95%. Therefore, thorough texture characterisation could be considered in further implementations of automatic pollen recognition systems based on image processing techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains

The automation of palynology (the identification and counting of pollen grains and spores) will be a small step for image recognition, but a giant stride for palynology. Here we show the first successful automated identification, with 100% accuracy, of a realistic number of taxa. The technique used involves a neural network classifier applied to surface texture data from light microscope images...

متن کامل

A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification

The identification of pollen in an automated way will accelerate different tasks and applications of palynology to aid in, among others, climate change studies, medical allergies calendar, and forensic science. The aim of this paper is to develop a system that automatically captures a hundred microscopic images of pollen and classifies them into the 12 different species from Lagunera Region, Me...

متن کامل

Automated differentiation of benign and malignant liver tumors by Ultrasound Images

Background & Aims: Early detection and reliable differentiation of benign and malignant liver tumors could lead to improved cure rate and costs. Ultrasound image (US) is a convenient medical imaging method for interpreting liver tumors. Visual inspection of ultrasound images sometimes is combined with error and needs biopsy to confirm whether a tumor would be benign or malignant. The aim of thi...

متن کامل

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

Xenia in Almonds: Pollen Source Effect on Characteristics of Some Iranian Late-Blooming Almonds and their self-Incompatibility

The objective of this experiment was evaluation of self-compatibility and identification, introduction and selection of late flowering genotypes as cultivars. This experiment was carried out in order to determine the best pollinator for two commercial almond cultivars, 'Shahrood 12' and 'Shahrood 21'. Applied pollinator cultivars were included pollen from 'Shahrood 21', 'Genco', 'Tuno', '5-15' ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micron

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2015